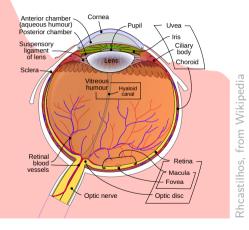
Model Order Reduction and Sensitivity Analysis for complex heat transfer simulations inside the human eyeball

Thomas Saigre, Christophe Prud'homme, Marcela Szopos

Séminaire EDP – IRMA 16th January 2024

Introduction



- Need to understand ocular physiology and pathology,
- Heat transfer has an impact on the distribution of drugs in the eye^a,
- Complexity to perform measurements on a human subject^b, mostly available on surface^c.

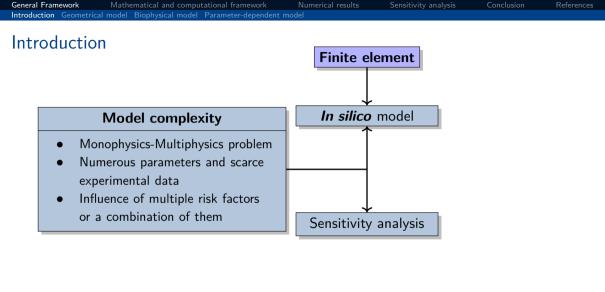
^aBhandari et al., J. Control Release (2020) ^bRosenbluth et al., Exp. Eye Res. (1977) ^cPurslow et al., Eye Contact Lens (2005)
 General Framework
 Mathematical and computational framework
 Numerical results
 Sensitivity analysis
 Conclusion
 References

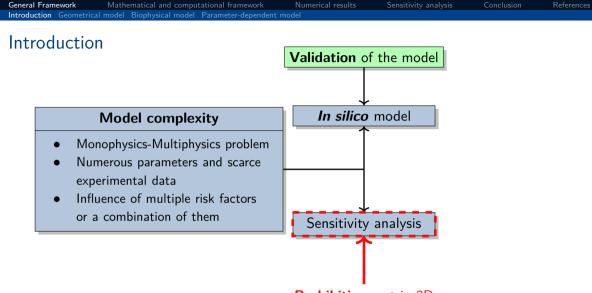
 Introduction
 Geometrical model
 Biophysical model
 Parameter-dependent model
 Param

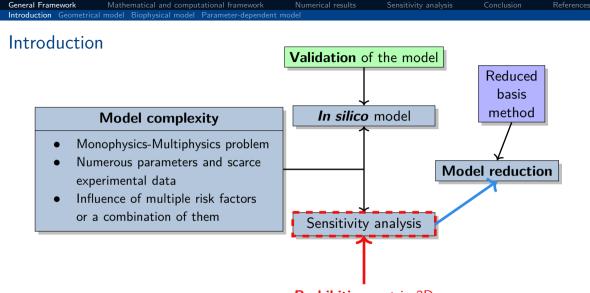
Introduction

Model complexity

- Monophysics-Multiphysics problem
- Numerous parameters and scarce experimental data
- Influence of multiple risk factors or a combination of them







Prohibitive cost in 3D

General Framework	Mathematical and computational framework		Sensitivity analysis	Conclusion	References
Introduction Geometrica	I model Biophysical model Parameter-dependent	model			

Contents

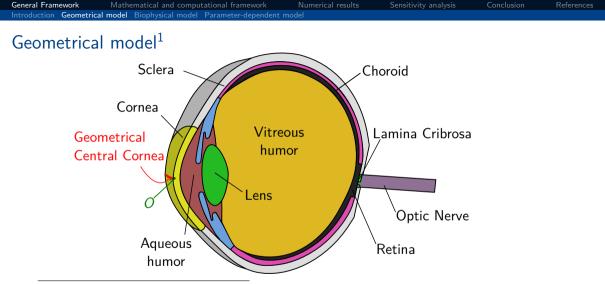
General Framework: geometric, biophysical and parametrical models

Mathematical and computational framework

Numerical results

Sensitivity analysis

Conclusion

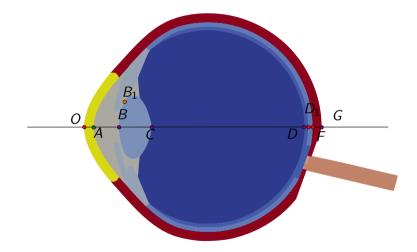


¹Lorenzo Sala et al. "The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye". In: *International Journal for Numerical Methods in Biomedical Engineering* (), e3791.

 General Framework
 Mathematical and computational framework
 Numerical results
 Sensitivity analysis
 Conclusion
 References

 Introduction
 Geometrical model
 Biophysical model
 Parameter-dependent model
 Sensitivity analysis
 Conclusion
 References

Geometrical model: output of interest



 General Framework
 Mathematical and computational framework
 Numerical results
 Sensitivity analysis
 Conclusion
 References

 Introduction
 Geometrical model
 Biophysical model
 Parameter-dependent model
 Ferences
 Ferences

Biophysical model¹

$$abla \cdot (\mathbf{k}_i \, \nabla \, T_i) = 0 \qquad \text{on } \Omega = \bigcup_i \Omega_i$$

where :

- *i* is the region index (Cornea, Aqueous Humor, Vitreous Humor, Sclera, Iris, Lens, Choroid, Lamina, Retine, Optic Nerve),
- \blacktriangleright T_i [K] is the temperature in the volume *i*,
- k_i [W m⁻¹ K^{-1}] is the thermal conductivity.

¹J.A. Scott. "A finite element model of heat transport in the human eye". In: *Physics in Medicine and Biology* 33.2 (1988), pp. 227–242; Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: *Computer Methods and Programs in Biomedicine* 82.3 (2006), pp. 268–276.

General Framework Introduction Geometrical model Biophysical model Parameter-dependent model

Biophysical model \mathcal{E}_{lin}

► Interface conditions :
$$\begin{cases} T_i = T_j & \text{over } \partial\Omega_i \cap \partial\Omega_j \\ k_i(\nabla T_i \cdot n_i) = -k_j(\nabla T_j \cdot n_j) & \text{over } \partial\Omega_i \cap \partial\Omega_j \end{cases}$$

► Robin condition on $\Gamma_N : -k \frac{\partial T}{\partial n} = h_{\text{bl}}(T - T_{\text{bl}})$
► Linearized Neumann condition^a on $\Gamma_N : -k_i \frac{\partial T_i}{\partial n} = h_{\text{amb}}(T_i - T_{\text{amb}}) + h_r(T_i - T_{\text{amb}}) + E$
 Γ_{amb}
 $h_r = 6 \text{W m}^{-2} \text{K}^{-1}$
^aJ.A. Scott. "A finite element model
of heat transport in the human eye".
In: Physics in Medicine and Biology
33.2 (1988), pp. 227-242

of

In:

Parameter dependent model

-

Symbol	Name	Dimension Baseline value		Range	
$ au_{amb}$	Ambient temperature	[K]	298	[283.15, 303.15]	
${\mathcal T}_{ m bl}$	Blood temperature	[K]	310	[308.3, 312]	
$h_{\rm amb}$	Ambient air convection coefficient	$[W m^{-2} K^{-1}]$	10	[8, 100]	
h _{bl}	Blood convection coefficient	$[W m^{-2} K^{-1}]$	65	[50, 110]	
E	Evaporation rate	[W m ⁻²]	40	[20, 320]	
k_{lens}	Lens conductivity	$[W m^{-1} K^{-1}]$	0.4	[0.21, 0.544]	
$k_{\rm cornea}$	Cornea conductivity	$[W m^{-1} K^{-1}]$	0.58	-	
$k_{ m sclera} = k_{ m iris} = k_{ m lamina} = k_{ m opticNerve}$	Eye envelope components conductivity	$[\mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}]$	1.0042	-	
$k_{aqueousHumor}$	Aqueous humor conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.28	-	
$k_{\rm vitreousHumor}$	Vitreous humor conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.603	-	
$k_{ m choroid} = k_{ m retina}$	Vascular beds conductivity	$[W m^{-1} K^{-1}]$	0.52	-	
ε	Emissivity of the cornea	[-]	0.975	-	

Geometrical parameters may be involved, but we will not consider them in this work.

Present work : focus on parameteric analysis

Parameter	Minimal value	Maximal value	Baseline value	Dimension
T_{amb}	283.15	303.15	298	[K]
$T_{ m bl}$	308.3	312	310	[K]
$h_{ m amb}$	8	100	10	$[W m^{-2} K^{-1}]$
$h_{ m bl}$	50	110	65	$[W m^{-2} K^{-1}]$
E	20	320	40	$[W m^{-2}]$
k_{lens}	0.21	0.544	0.4	$[W m^{-1} K^{-1}]$

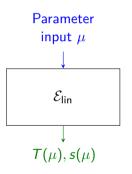
Table 1: Range of values for the parameters

▶ We set
$$\mu = (T_{amb}, T_{bl}, h_{amb}, h_{bl}, E, k_{lens}) \in D^{\mu} \subset \mathbb{R}^{6}$$
.

• $\bar{\mu} \in D^{\mu}$ is the baseline value of the parameters.

General Framework	Mathematical and computational framework	Sensitivity ana	lysis Conclusion	References
Continuous and discrete p		Adaptative procedure		

Mathematical and computational framework



We set $V := H^1(\Omega)$.

Problem considered

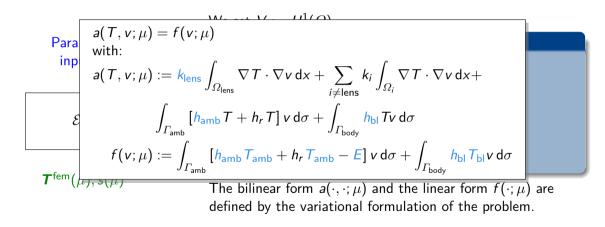
Given $\mu \in D^\mu$, evaluate the output of interest

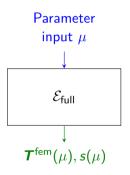
$$s(\mu) = \ell(T(\mu);\mu)$$

where $T(\mu) \in V$ is the solution of

$$a(T(\mu), v; \mu) = f(v; \mu) \quad \forall v \in V$$

The bilinear form $a(\cdot, \cdot; \mu)$ and the linear form $f(\cdot; \mu)$ are defined by the variational formulation of the problem.





We set $V := H^1(\Omega)$. Denote by $V_h \subset V$ a finite-dimensional subspace of V of dimension \mathcal{N} .

High-fidelity model

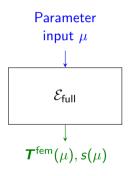
Given $\mu \in {\it D}^{\mu}$, evaluate the output of interest

$$s(\mu) = \ell(\mathbf{T}^{\mathsf{fem}}(\mu);\mu)$$

where $oldsymbol{\mathcal{T}}^{\mathsf{fem}}(\mu) \in V_h$ is the solution of

 $\mathsf{a}(\mathbf{\mathit{T}}^{\mathsf{fem}}(\mu), \mathbf{v}; \mu) = f(\mathbf{v}; \mu) \hspace{1em} orall \mathbf{v} \in V_h$

The bilinear form $a(\cdot, \cdot; \mu)$ and the linear form $f(\cdot; \mu)$ are defined by the variational formulation of the problem.



High fidelity resolution

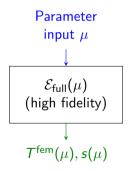
Input: $\mu \in D^{\mu}$,

- Construct $\underline{\underline{A}}(\mu)$, $f(\mu)$ and $L_k(\mu)$,
- Solve $\underline{\underline{A}}(\mu) T^{\text{fem}}(\mu) = f(\mu)$,
- Compute outputs $s_k(\mu) = \boldsymbol{L}_k(\mu)^T \boldsymbol{T}^{\text{fem}}(\mu)$.

Output: Numerical solution $\boldsymbol{T}^{\text{fem}}(\mu)$ and outputs $s_k(\mu)$.

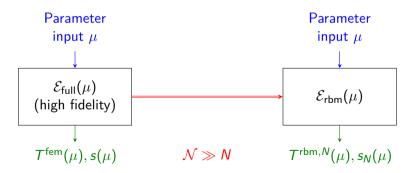
Model Order Reduction

- ► Goal: replicate input-output behavior of the high fidelity model *E*_{lin} with a reduced order model *E*_{rbm},
- With a procedure stable and efficient.

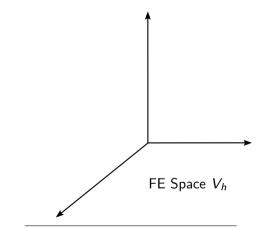


Model Order Reduction

- ▶ Goal: replicate input-output behavior of the high fidelity model \mathcal{E}_{lin} with a reduced order model \mathcal{E}_{rbm} ,
- With a procedure stable and efficient.



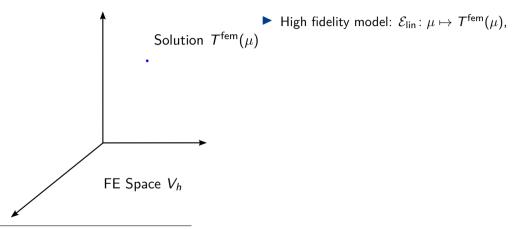
Reduced Basis Method²



▶ High fidelity model: $\mathcal{E}_{\text{lin}}: \mu \mapsto T^{\text{fem}}(\mu)$,

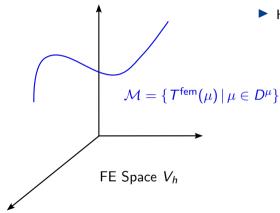
²C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: *Journal of Fluids Engineering* 124.1 (Nov. 2001), pp. 70–80.

Reduced Basis Method²



²C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: *Journal of Fluids Engineering* 124.1 (Nov. 2001), pp. 70–80.

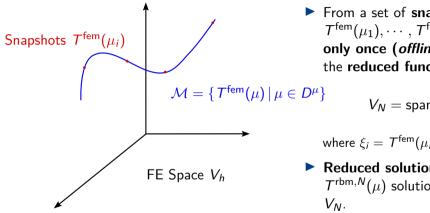
Reduced Basis Method²



▶ High fidelity model: $\mathcal{E}_{\text{lin}}: \mu \mapsto T^{\text{fem}}(\mu)$,

²C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: *Journal of Fluids Engineering* 124.1 (Nov. 2001), pp. 70–80.

Reduced Basis Method²



From a set of **snapshots** $T^{\text{fem}}(\mu_1), \cdots, T^{\text{fem}}(\mu_N)$ computed only once (offline stage), we define the reduced functional space:

$$V_N = \operatorname{span}(\xi_1, \cdots, \xi_N)$$

where $\xi_i = T^{\text{fem}}(\mu_i)$, is orthonormalized.

Reduced solution (online stage): $T^{\mathrm{rbm},N}(\mu)$ solution of the PDE on

²C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: Journal of Fluids Engineering 124.1 (Nov. 2001), pp. 70-80.

Reduced Basis Method

Problem considered

Given $\mu \in D^{\mu}$, evaluate the output of interest

$$s_{\mathcal{N}}(\mu) = \ell(\boldsymbol{T}^{\mathsf{rbm},\mathcal{N}}(\mu);\mu)$$

where $\boldsymbol{T}^{\mathsf{rbm},\mathcal{N}}(\mu) \in V$ is the solution of

$$a(\mathbf{\mathcal{T}}^{\mathsf{rbm},N}(\mu), \mathbf{v}; \mu) = f(\mathbf{v}; \mu) \quad orall \mathbf{v} \in V_N$$

Snapshots matrix: $\mathbb{Z}_{N} = [\xi_{1}, \cdots, \xi_{N}] \in \mathbb{R}^{\mathcal{N} \times N}$

Reduced Basis Method

Problem considered

Given $\mu\in D^{\mu},$ evaluate the output of interest

$$s_{N}(\mu) = \ell(\boldsymbol{T}^{\mathsf{rbm},N}(\mu);\mu)$$

where $\boldsymbol{T}^{\mathsf{rbm},N}(\mu) \in V$ is the solution of

$$\mathsf{a}(\mathbf{\mathit{T}^{rbm,N}}(\mu), v; \mu) = f(v; \mu) \hspace{1em} orall v \in V_N$$

- Snapshots matrix: $\mathbb{Z}_N = [\xi_1, \cdots, \xi_N] \in \mathbb{R}^{\mathcal{N} \times N}$
- Projection onto V_N : $\underline{\underline{A}}_N(\mu) := \mathbb{Z}_N^T \underline{\underline{A}}(\mu) \mathbb{Z}_N \in \mathbb{R}^{N \times N}$ and $f_N(\mu) := \mathbb{Z}_N^T f(\mu) \in \mathbb{R}^N$,

Reduced basis resolution

Input: $\mu \in D^{\mu}$,

- Construct $\underline{\underline{A}}_{N}(\mu)$, $f_{N}(\mu)$ and $L_{N,k}(\mu)$,
- Solve $\underline{\underline{A}}_{N}(\mu) T^{\mathrm{rbm},N}(\mu) = f_{N}(\mu)$,
- Compute outputs $s_{N,k}(\mu) = L_{N,k}(\mu)^T T^{\text{rbm},N}(\mu).$ Output: Numerical solution $T^{\text{rbm},N}(\mu)$ and

output: Numerical solution $\Gamma^{(sn),v}(\mu)$ and outputs $s_{N,k}(\mu)$.

Affine decomposition

• We want to write
$$\underline{\underline{A}}(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{A}}^q$$
, and $F(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) F^q$.
• Compute and store $\underline{\underline{A}}_N^q = \underbrace{\mathbb{Z}}_N^T \underline{\underline{A}}^q \mathbb{Z}_N$ and $F_N^q = \mathbb{Z}_N^T F^q$.
• Hence $\underline{\underline{A}}_N(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{A}}_N^q$ and $F_N(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) F_N^q$.

Affine decomposition

We want to write
$$\underline{\underline{A}}(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{A}}^q$$
, and $F(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) F^q$.
Compute and store $\underline{\underline{A}}_N^q = \mathbb{Z}_N^T \underline{\underline{A}}^q \mathbb{Z}_N$ and $F_N^q = \mathbb{Z}_N^T F^q$.
 $a(T, v; \mu) = \sum_{q=1}^4 \beta_A^q(\mu) a^q(T, v)$ with
 $\beta_A^1(\mu) = k_{\text{lens}} \qquad a^1(T, v) = \int_{\Omega_{\text{lens}}} \nabla T \cdot \nabla v \, dx$
 $\beta_A^2(\mu) = h_{\text{amb}} \qquad a^2(T, v) = \int_{\Gamma_{\text{amb}}} Tv \, d\sigma$
 $\beta_A^3(\mu) = h_{\text{bl}} \qquad a^3(T, v) = \int_{\Gamma_{\text{body}}} Tv \, d\sigma$
 $\beta_A^4(\mu) = 1 \qquad a^4(T, v) = \int_{\Gamma_{\text{amb}}} h_r Tv \, d\sigma + \sum_{i \neq \text{lens}} k_i \int_{\Omega_i} \nabla T \cdot \nabla v \, dx$

Affine decomposition

We want to write
$$\underline{\underline{A}}(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{A}}^q$$
, and $F(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) F^q$.
Compute and store $\underline{\underline{A}}_N^q = \mathbb{Z}_N^T \underline{\underline{A}}^q \mathbb{Z}_N$ and $F_N^q = \mathbb{Z}_N^T F^q$.
 $f(v; \mu) = \sum_{p=1}^2 \beta_F^p(\mu) f^p(v)$
 $\beta_F^1(\mu) = h_{\text{amb}} T_{\text{amb}} + h_r T_{\text{amb}} - E$
 $f^1(v) = \int_{\Gamma_{\text{amb}}} v \, d\sigma$
 $\beta_F^2(\mu) = h_{\text{bl}} T_{\text{bl}}$

Offline / Online procedure

Offline:

- Solve N high-fidelity systems depending on \mathcal{N} to form \mathbb{Z}_N ,
- Form and store $F_N^p(\xi_i)$
- Form and store $\underline{\underline{A}}_{N}^{q}(\xi_{i})$

Online: independant of $\mathcal N$

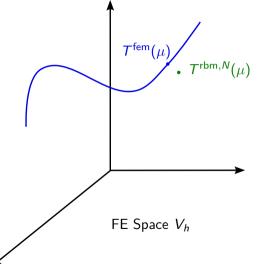
Given a new parameter $\mu\in D^{\mu}$,

- Form $\underline{\underline{A}}_{N}(\mu)$: $O(Q_a N^2)$,
- Form $F_N(\mu)$: $O(Q_f N)$,

• Solve
$$\underline{\underline{A}}_{N}(\mu) \mathbf{T}^{\mathsf{rbm},N}(\mu) = \mathbf{F}_{N}(\mu) : O(N^{3}),$$

• Compute $s_N(\mu) = \boldsymbol{L}_N(\mu)^T \boldsymbol{T}^{\mathsf{rbm},N}(\mu) : O(N).$

Error bound $\Delta_N(\mu)$



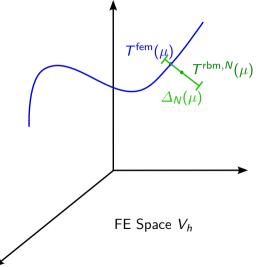
For $\mu \in D^{\mu}$, we define the error:

$$e(\mu) = oldsymbol{T}^{\mathsf{fem}}(\mu) - oldsymbol{T}^{\mathsf{rbm}, oldsymbol{N}}(\mu)$$

 General Framework
 Mathematical and computational framework
 Numerical results
 Sensitivity analysis
 Conclusion
 References

 Continuous and discrete problem
 Reduce order modeling
 Error bound
 Non-compliant problem
 Adaptative procedure
 Laplacian with singular data

Error bound $\Delta_N(\mu)$



For $\mu \in D^{\mu}$, we define the error:

$$e(\mu) = oldsymbol{T}^{\mathsf{fem}}(\mu) - oldsymbol{T}^{\mathsf{rbm}, oldsymbol{N}}(\mu)$$

We require this error bound to be:

- ▶ rigorous: ||e(µ)||_X ≤ Δ_N(µ),
 ▶ sharp: $\frac{\Delta_N(µ)}{||e(µ)||_X} ≤ \eta_{max}(µ),$
- efficient: the computation of $\Delta_N(\mu)$ does not depend on \mathcal{N} .

 General Framework
 Mathematical and computational framework
 Numerical results
 Sensitivity analysis
 Conclusion
 References

 Continuous and discrete problem
 Reduce order modeling
 Error bound
 Non-compliant problem
 Adaptative procedure
 Laplacian with singular data

Error bound³ $\Delta_N(\mu)$

Such an error bound can be constructed efficiently from the *residual* r of the variational problem:

$$\mathsf{r}(\mathsf{v},\mu) := \ell(\mathsf{v};\mu) - \mathsf{a}(\mathcal{T}^{\mathsf{rbm},\mathsf{N}}(\mu),\mathsf{v};\mu) \quad orall \mathsf{v} \in \mathcal{V}$$

a lower bound $\alpha_{lb}(\mu)$ of the coercivity constant $\alpha(\mu)$ of $a(\cdot, \cdot; \mu)$, and the affine decomposition of a and f:

$$arDelta_{\mathsf{N}}^{\mathsf{s}}(\mu) := rac{\| \mathbf{r}(\cdot,\mu) \|_{\mathbf{V}'}^2}{lpha_{\mathsf{lb}}(\mu)}$$

³C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: *Journal of Fluids Engineering* 124.1 (Nov. 2001), pp. 70–80.

Non compliant problem

Definition

The problem is said to be *compliant* if the bilinear form *a* is symmetric, and $\ell = f$.

Error on the output

For $\mu \in D^{\mu}$, we have:

$$\begin{split} s(\mu) - s_{\mathcal{N}}(\mu) &= a(\boldsymbol{T}^{\mathsf{fem}} - \boldsymbol{T}^{\mathsf{rbm},\mathcal{N}}, \boldsymbol{T}^{\mathsf{fem}} - \boldsymbol{T}^{\mathsf{rbm},\mathcal{N}}; \mu \\ |s(\mu) - s_{\mathcal{N}}(\mu)| &\leq \gamma(\mu) \left\| \boldsymbol{T}^{\mathsf{fem}} - \boldsymbol{T}^{\mathsf{rbm},\mathcal{N}} \right\|_{V}^{2} \end{split}$$

The error on the output converges as the square of the error on the field solution $\mathcal{T}^{\mathrm{rbm},N}$

Non compliant problem

Definition

The problem is said to be *compliant* if the bilinear form *a* is symmetric, and $\ell = f$.

Error on the output

For $\mu \in D^{\mu}$, we have:

$$egin{aligned} s(\mu) - s_{\mathcal{N}}(\mu) &= a(oldsymbol{T}^{ ext{fem}} - oldsymbol{T}^{ ext{rbm},\mathcal{N}},oldsymbol{T}^{ ext{fem}} - oldsymbol{T}^{ ext{rbm},\mathcal{N}};\mu) \ &|s(\mu) - s_{\mathcal{N}}(\mu)| \leqslant \gamma(\mu) \left\|oldsymbol{T}^{ ext{fem}} - oldsymbol{T}^{ ext{rbm},\mathcal{N}}
ight\|_{V}^{2} \end{aligned}$$

The error on the output converges as the square of the error on the field solution $\mathcal{T}^{\mathrm{rbm},N}$

Not our case ! We focus on output like $\ell(\mu) = \langle \delta_O, T(\mu) \rangle$

Non compliant problem

• We introduce the *dual problem*: Find $\psi(\mu) \in V$ such that:

$$\mathsf{a}(\mathsf{v},\psi(\mu);\mu)=-\ell(\mathsf{v};\mu) \hspace{1em} orall \mathsf{v}\in V$$

► We retrieve a similar property:

$$|s(\mu) - s_{\mathcal{N}}(\mu)| \leqslant \gamma(\mu) \left\| \mathcal{T}^{\mathsf{fem}}(\mu) - \mathcal{T}^{\mathsf{rbm},\mathcal{N}}(\mu)
ight\|_{V} \left\| \psi^{\mathsf{fem}}(\mu) - \psi^{\mathsf{rbm},\mathcal{N}}(\mu)
ight\|_{V}$$

► The output error bound has the form:

$$\Delta_{N}^{s}(\mu) := \frac{\|r^{\mathsf{pr}}(\cdot;\mu)\|_{V'}}{\sqrt{\alpha_{\mathsf{lb}}(\mu)}} \frac{\|r^{\mathsf{du}}(\cdot;\mu)\|_{V'}}{\sqrt{\alpha_{\mathsf{lb}}(\mu)}}$$

Greedy algorithm

Algorithm 1: Greedy algorithm to construct the reduced basis.

Laplacian problem with Dirac as a right-hand side

We have a regular-enough domain $\Omega \subset \mathbb{R}^2$. Let $X_0 = (x_0, y_0) \in \Omega$. We consider the following problem:

$$\begin{cases} -\Delta u = \delta_{\mathbf{X}_0} & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (P_{\delta})

The finite element solution of Eq. (P_{δ}) $u_h \in V_h^k$ is defined as the solution of the following problem:

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h = \langle \delta_{\mathbf{X}_0}, v_h \rangle \quad \text{for all } v_h \in V_h^k$$

General Framework Mathematical and computational framework Numerical results Sensitivity analysis Conclusion References Continuous and discrete problem Reduce order modeling Error bound Non-compliant problem Adaptative procedure Laplacian with singular data

Laplacian problem with Dirac as a right-hand side

We can compute the exact solution of Eq. (P_{δ}) .

Definition: Let $G: \Omega \to \mathbb{R}$ be the *Green's function* defined by

$$G(x,y) = -\frac{1}{2\pi} \log \left(\sqrt{(x-x_0)^2 + (y-y_0)^2} \right).$$

Proposition: This function satisfies $-\Delta G = \delta_{\mathbf{X}_0}$ in Ω

⁴Silvia Bertoluzza et al. "Local error estimates of the finite element method for an elliptic problem with a Dirac source term". In: *Numerical Methods for Partial Differential Equations* 34.1 (2018), pp. 97–120.

Thomas Saigre

General Framework Mathematical and computational framework Numerical results Sensitivity analysis Conclusion References Continuous and discrete problem Reduce order modeling Error bound Non-compliant problem Adaptative procedure Laplacian with singular data

Laplacian problem with Dirac as a right-hand side

We can compute the exact solution of Eq. (P_{δ}) .

Definition: Let $G: \Omega \to \mathbb{R}$ be the *Green's function* defined by

$$G(x,y) = -\frac{1}{2\pi} \log \left(\sqrt{(x-x_0)^2 + (y-y_0)^2} \right).$$

Proposition: This function satisfies $-\Delta G = \delta_{\mathbf{X}_0}$ in Ω

Theorem⁴: Under good conditions, involving subdomains $\Omega_0 \subset \Omega_1 \subset \Omega$, if *u* denotes the exact solution and u_h the finite element solution of the problem, then

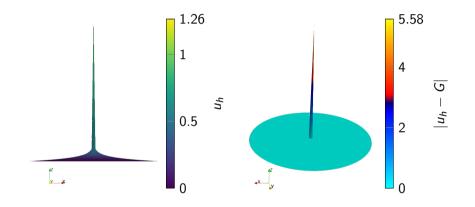
$$\|u-u_h\|_{1,\Omega} \leqslant C(\Omega_0,\Omega_1,\Omega)h^k \sqrt{|\log(h)|}$$

⁴Silvia Bertoluzza et al. "Local error estimates of the finite element method for an elliptic problem with a Dirac source term". In: *Numerical Methods for Partial Differential Equations* 34.1 (2018), pp. 97–120.

Thomas Saigre

General Framework	Mathematical and computational framewor	Numerical results	Sensitivity ana	lysis Conclusion	References
Continuous and discrete p			Adaptative procedure	Laplacian with singular data	

Numerical results

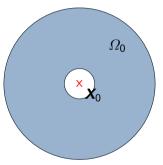


(a) Numerical solution u_h .

(b) Error on the numerical solution u_h compared to the exact solution G.

Convergence study

We compute the error over a domain $\Omega_0 = \Omega \setminus \overline{B(X_0, r)}$ where $B(X_0, r)$ is a ball centered in X_0 and with radius r.

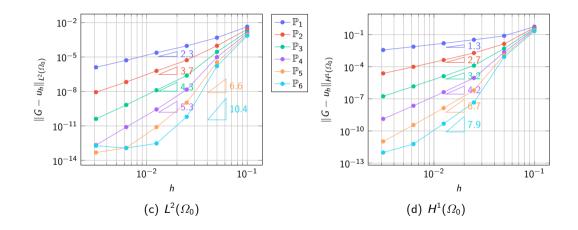


Error computed over Ω_0 :

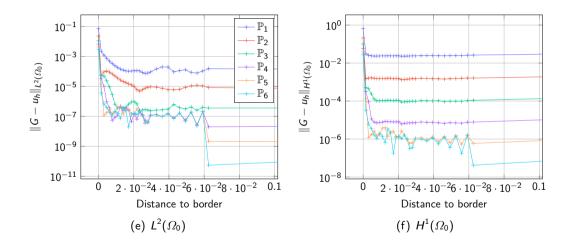
$$E := \|u - u_h\|_{L^2(\Omega_0)}$$
 or $E := \|u - u_h\|_{H^1(\Omega_0)}$

General Framework Mathematical and computational framework Numerical results Sensitivity analysis Conclusion References Continuous and discrete problem Reduce order modeling Error bound Non-compliant problem Adaptative procedure Laplacian with singular data

Convergence study: Mesh convergence



Convergence study: Position of the discontinuity to the border

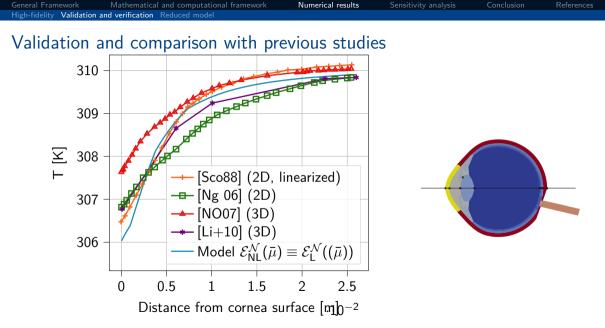


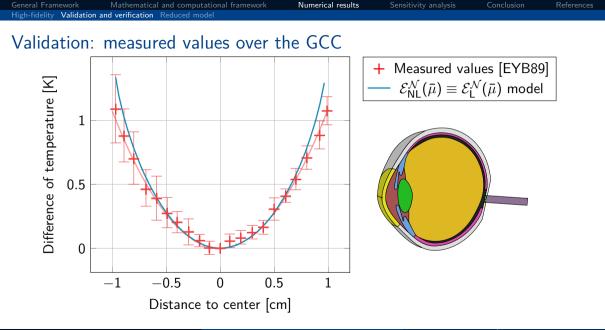
General Framework	Mathematical and computational framework	Numerical results	Sensitivity analysis	Conclusion	References

Numerical results



Figure 1: Distribution of the temperature [K] in the eyeball from the linear model $\mathcal{E}_{L}(\mu)$.





General Framework	Mathematical and computational framework	Numerical results	Sensitivity analysis	Conclusion	References
High-fidelity Validation and verification Reduced model					

Time of execution

	Finite element resolution ${\cal T}^{\sf fem}(\mu)$			Reduced model $\mathcal{T}^{rbm, \mathcal{N}}(\mu), arDelta_{\mathcal{N}}(\mu)$		
	\mathbb{P}_1	\mathbb{P}_2 (np=1)	\mathbb{P}_2 (np=12)			
Problem size	$\mathcal{N}=207845$	$\mathcal{N}=1$	580 932	N = 10		
$t_{ m exec}$	5.534 s	62.432 s	10.76 s	$2.88 imes10^{-4} m s$		
speed-up	11.69	1	5.80	$2.17 imes10^5$		

Table 2: Times of execution, using mesh M3 for high fidelity simulations.

Results over a sampling $\varXi_{\mathsf{test}} \subset D^{\mu}$ of 100 parameters

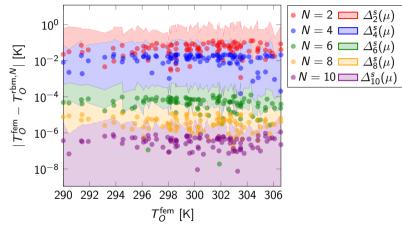


Figure 2: Error on RBM for various reduced basis sizes with error bound $\Delta_N(\mu)$.

References

Results over a sampling $\varXi_{\mathsf{test}} \subset D^\mu$ of 100 parameters

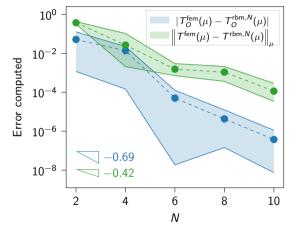


Figure 2: Convergence of the errors on the field and the output on point *O*.

Results over a sampling $\Xi_{\text{test}} \subset D^{\mu}$ of 100 parameters

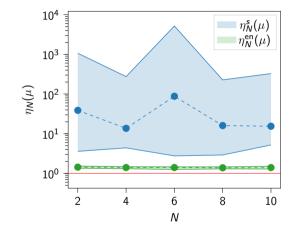


Figure 2: Stability of the effectivity.

General Framework	Mathematical and computational framework	Sensitivity analysis	Conclusion	References
Choice of the distributions				

Sensitivity analysis

 General Framework
 Mathematical and computational framework
 Numerical results
 Sensitivity analysis
 Conclusion
 References

 Choice of the distributions
 Uncertainty propagation
 Stochastic sensitivity analysis
 Conclusion
 References

Sobol indices

•
$$\mu = (\mu_1, \ldots, \mu_n) \in D^{\mu}$$
,

• $\mu_i \sim X_i$ where $(X_i)_i$ is a family of **independent** random variables,

• Output
$$s_N(\mu) \sim Y = f(X_1, \ldots, X_n)$$
,

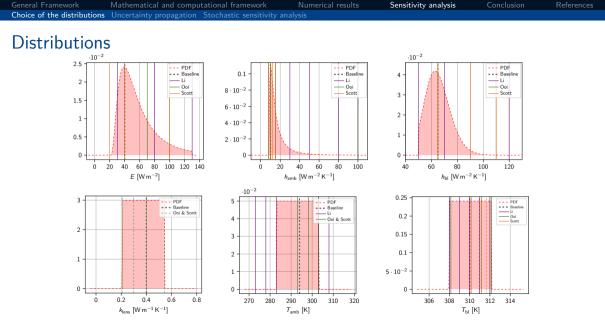
Distributions X_i selected from data available in the literature.

Sobol indices

First-order indices:
$$S_j = \frac{\text{Var}\left(\mathbb{E}\left[Y|X_j\right]\right)}{\text{Var}(Y)}$$
Total-order indices: $S_j^{\text{tot}} = \frac{\text{Var}\left(\mathbb{E}\left[Y|X_{(-j)}\right]\right)}{\text{Var}(Y)}$
where $X_{(-j)} = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_n).$

effect of one parameter on the output

interaction of all parameters but one on the output



Thomas Saigre

16th January 2024 31 / 36

General Framework Mathematical and computational framework Numerical results Sensitivity analysis Conclusion References Choice of the distributions Uncertainty propagation Stochastic sensitivity analysis

Uncertainty propagation

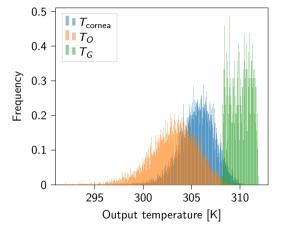
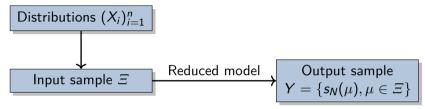


Figure 3: Distribution of the output, from the composed input distribution.

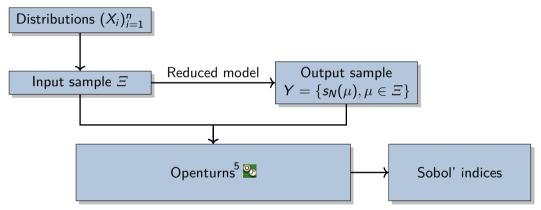
Stochastic sensitivity analysis



⁵Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: *Handbook of Uncertainty Quantification*. Ed. by Roger Ghanem et al. Cham: Springer International Publishing, 2016, pp. 1–38.

Thomas Saigre

Stochastic sensitivity analysis



⁵Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: *Handbook of Uncertainty Quantification*. Ed. by Roger Ghanem et al. Cham: Springer International Publishing, 2016, pp. 1–38.

Thomas Saigre

General Framework Mathematical and computational framework Numerical results Sensitivity analysis Conclusion References Choice of the distributions Uncertainty propagation Stochastic sensitivity analysis

Stochastic sensitivity analysis

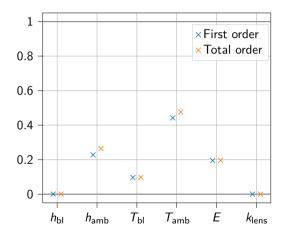


Figure 4: Sobol indices: temperature at point O.

- Temperature at the level of the cornea:
 - ► significantly influenced by T_{amb}, h_{amb} (external factors) and E, T_{bl} (subject specific parameters) → need for measurements/better model for these contributions,
 - minimally influenced by $k_{\text{lens}}, h_{\text{bl}} \longrightarrow$ can be fixed at baseline value,
 - high order interactions on T_{amb}, h_{amb}.

G

Stochastic sensitivity analysis

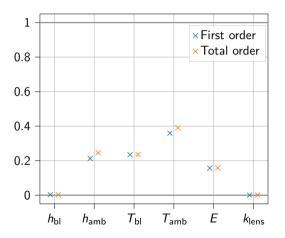
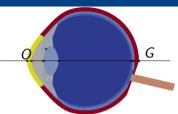


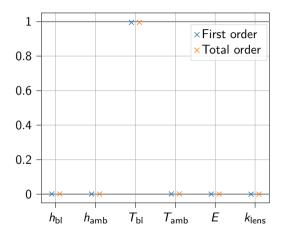
Figure 4: Mean temperature over the cornea.

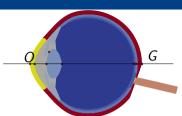


Mean temperature over the cornea:

- significantly influenced by T_{amb}, h_{amb} and E, T_{bl},
- **•** minimally influenced by k_{lens} , h_{bl} ,
- high order interactions on T_{amb}, h_{amb}.

Stochastic sensitivity analysis





Temperature at the back of the eye:

 only influenced by the blood temperature.

Figure 4: Sobol indices: temperature at point *O*.

Conclusion

Conclusion and outlook

- Heat transport model in the human eye: FEM simulations, validation against experimental data, and model order reduction,
- Reduced model with a certified error bound,
- Sensitivity analysis: computation of Sobol indices thanks to MOR, highlight of the impact of some parameters on the output.

Next steps:

- Model: couple thermal effect with aqueous humor dynamics in the anterior chamber,
- Non intrusive methods with zoom in zone of interest for non linear of non affine problems (EIM, NIRB),
- Application: robust framework to simulate drug delivery in the eye.

Conclusion

Conclusion and outlook

- Heat transport model in the human eye: FEM simulations, validation against experimental data, and model order reduction,
- Reduced model with a certified error bound,
- Sensitivity analysis: computation of Sobol indices thanks to MOR, highlight of the impact of some parameters on the output.

Next steps:

- Model: couple thermal effect with aqueous humor dynamics in the anterior chamber,
- Non intrusive methods with zoom in zone of interest for non linear of non affine problems (EIM, NIRB),
- Application: robust framework to simulate drug delivery in the eye.

Thank you for your attention!

Bibliography

- [Bau+16] Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: Handbook of Uncertainty Quantification. Ed. by Roger Ghanem, David Higdon, and Houman Owhadi. Cham: Springer International Publishing, 2016, pp. 1–38.
- [BBS20] Ajay Bhandari, Ankit Bansal, and Niraj Sinha. "Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study". In: *Journal of Controlled Release* 328 (2020), pp. 286–303.
- [Ber+18] Silvia Bertoluzza et al. "Local error estimates of the finite element method for an elliptic problem with a Dirac source term". In: Numerical Methods for Partial Differential Equations 34.1 (2018), pp. 97–120.
- [EYB89] Nathan Efron, Graeme Young, and Noel A Brennan. "Ocular surface temperature.". In: *Current eye research* 8 9 (1989), pp. 901–6.

Bibliography

- [Li+10] Eric Li et al. "Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method (α FEM)". In: *International Journal for Numerical Methods in Biomedical Engineering* 26.8 (2010), pp. 955–976.
- [Ng 06] Ng, E.Y.K. and Ooi, E.H. "FEM simulation of the eye structure with bioheat analysis". In: Computer Methods and Programs in Biomedicine 82.3 (2006), pp. 268–276.
- [NO07] E.Y.K. Ng and E.H. Ooi. "Ocular surface temperature: A 3D FEM prediction using bioheat equation". In: Computers in Biology and Medicine 37.6 (2007), pp. 829–835.
- [Pru+01] C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods ". In: *Journal of Fluids Engineering* 124.1 (Nov. 2001), pp. 70–80.
- [PW05] Christine Purslow and James S Wolffsohn. "Ocular surface temperature: a review". en. In: Eye Contact Lens 31.3 (May 2005), pp. 117–123.

- [QMN16] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. Reduced Basis Methods for Partial Differential Equations. Springer International Publishing, 2016.
- [RF77] Robert F. Rosenbluth and Irving Fatt. "Temperature measurements in the eye". In: *Experimental Eve Research* 25.4 (1977), pp. 325–341.
- [Sal+] Lorenzo Sala et al. "The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye". In: International Journal for Numerical Methods in Biomedical Engineering (), e3791.
- [Sco88] J.A. Scott. "A finite element model of heat transport in the human eye". In: Physics in Medicine and Biology 33.2 (1988), pp. 227–242.