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▶ Need to understand ocular physiology
and pathology,

▶ Heat transfer has an impact on the
distribution of drugs in the eyea,

▶ Complexity to perform measurements
on a human subjectb, mostly available
on surfacec.

aBhandari et al., J. Control Release (2020)
bRosenbluth et al., Exp. Eye Res. (1977)
cPurslow et al., Eye Contact Lens (2005)
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Geometrical model1
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1Lorenzo Sala et al. “The ocular mathematical virtual simulator: A validated multiscale model for
hemodynamics and biomechanics in the human eye”. In: International Journal for Numerical Methods in
Biomedical Engineering (), e3791.
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Geometrical model: output of interest
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Biophysical model1

∇ · (ki ∇Ti) = 0 on Ω =
⋃
i
Ωi

where :
▶ i is the region index (Cornea, Aqueous Humor, Vitreous Humor, Sclera, Iris, Lens,

Choroid, Lamina, Retine, Optic Nerve),
▶ Ti [K] is the temperature in the volume i ,
▶ ki [W m−1K−1] is the thermal conductivity.

1J.A. Scott. “A finite element model of heat transport in the human eye”. In: Physics in Medicine
and Biology 33.2 (1988), pp. 227–242; Ng, E.Y.K. and Ooi, E.H. “FEM simulation of the eye structure
with bioheat analysis”. In: Computer Methods and Programs in Biomedicine 82.3 (2006), pp. 268–276.
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Biophysical model Elin

▶ Interface conditions :
{

Ti = Tj

ki(∇Ti · ni) = −kj(∇Tj · nj)
over ∂Ωi ∩ ∂Ωj

▶ Robin condition on ΓN : −k ∂T
∂n = hbl(T − Tbl)

▶ Linearized Neumann conditiona on ΓN :
−ki

∂Ti
∂n = hamb(Ti − Tamb) + hr (Ti − Tamb) + E

Γamb Γbody

aJ.A. Scott. “A finite element model
of heat transport in the human eye”.
In: Physics in Medicine and Biology
33.2 (1988), pp. 227–242

hr = 6 W m−2 K−1
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Parameter dependent model

Symbol Name Dimension Baseline value Range

Tamb Ambient temperature [K] 298 [283.15, 303.15]
Tbl Blood temperature [K] 310 [308.3, 312]

hamb Ambient air convection coefficient [W m−2 K−1] 10 [8, 100]
hbl Blood convection coefficient [W m−2 K−1] 65 [50, 110]
E Evaporation rate [W m−2] 40 [20, 320]

klens Lens conductivity [W m−1 K−1] 0.4 [0.21, 0.544]
kcornea Cornea conductivity [W m−1 K−1] 0.58 –

ksclera = kiris =
klamina = kopticNerve

Eye envelope components conductivity [W m−1 K−1] 1.0042 –

kaqueousHumor Aqueous humor conductivity [W m−1 K−1] 0.28 –
kvitreousHumor Vitreous humor conductivity [W m−1 K−1] 0.603 –

kchoroid = kretina Vascular beds conductivity [W m−1 K−1] 0.52 –
ε Emissivity of the cornea [–] 0.975 –

Geometrical parameters may be involved, but we will not consider them in this work.
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Present work : focus on parameteric analysis

Parameter Minimal value Maximal value Baseline value Dimension
Tamb 283.15 303.15 298 [K]
Tbl 308.3 312 310 [K]

hamb 8 100 10 [W m−2 K−1]
hbl 50 110 65 [W m−2 K−1]
E 20 320 40 [W m−2]

klens 0.21 0.544 0.4 [W m−1 K−1]

Table 1: Range of values for the parameters

▶ We set µ = (Tamb,Tbl, hamb, hbl,E , klens) ∈ Dµ ⊂ R6.
▶ µ̄ ∈ Dµ is the baseline value of the parameters.
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Mathematical and computational framework
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Continuous and discrete problem

Elin

Parameter
input µ

T (µ), s(µ)

We set V := H1(Ω).
Problem considered
Given µ ∈ Dµ, evaluate the output of interest

s(µ) = ℓ(T (µ);µ)

where T (µ) ∈ V is the solution of

a(T (µ), v ;µ) = f (v ;µ) ∀v ∈ V

The bilinear form a(·, ·;µ) and the linear form f (·;µ) are
defined by the variational formulation of the problem.
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Continuous and discrete problem

Elin

Parameter
input µ

T fem(µ), s(µ)

We set V := H1(Ω).
Problem considered
Given µ ∈ Dµ, evaluate the output of interest

s(µ) = ℓ(T (µ);µ)

where T (µ) ∈ V is the solution of

a(T (µ), v ;µ) = f (v ;µ) ∀v ∈ V

The bilinear form a(·, ·;µ) and the linear form f (·;µ) are
defined by the variational formulation of the problem.

a(T , v ;µ) = f (v ;µ)
with:
a(T , v ;µ) := klens

∫
Ωlens
∇T · ∇v dx +

∑
i ̸=lens

ki

∫
Ωi
∇T · ∇v dx+∫

Γamb
[hambT + hr T ] v dσ +

∫
Γbody

hblTv dσ

f (v ;µ) :=
∫

Γamb
[hambTamb + hr Tamb − E ] v dσ +

∫
Γbody

hblTblv dσ
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Continuous and discrete problem

Efull

Parameter
input µ

T fem(µ), s(µ)

We set V := H1(Ω). Denote by Vh ⊂ V a finite-dimensional
subspace of V of dimension N .
High-fidelity model
Given µ ∈ Dµ, evaluate the output of interest

s(µ) = ℓ(T fem(µ);µ)

where T fem(µ) ∈ Vh is the solution of

a(T fem(µ), v ;µ) = f (v ;µ) ∀v ∈ Vh

The bilinear form a(·, ·;µ) and the linear form f (·;µ) are
defined by the variational formulation of the problem.
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Continuous and discrete problem

Efull

Parameter
input µ

T fem(µ), s(µ)

High fidelity resolution
Input: µ ∈ Dµ,
▶ Construct A(µ), f (µ) and Lk(µ),
▶ Solve A(µ)T fem(µ) = f (µ),
▶ Compute outputs sk(µ) = Lk(µ)T T fem(µ).

Output: Numerical solution T fem(µ) and outputs sk(µ).
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Model Order Reduction
▶ Goal: replicate input-output behavior of the high fidelity model Elin with a reduced

order model Erbm,
▶ With a procedure stable and efficient.

Efull(µ)
(high fidelity)

Parameter
input µ

T fem(µ), s(µ)

Erbm(µ)

Parameter
input µ

N ≫ N T rbm,N(µ), sN(µ)
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Reduced Basis Method2

FE Space Vh

▶ High fidelity model: Elin : µ 7→ T fem(µ),

2C. Prud’homme et al. “Reliable Real-Time Solution of Parametrized Partial Differential Equations:
Reduced-Basis Output Bound Methods ”. In: Journal of Fluids Engineering 124.1 (Nov. 2001),
pp. 70–80.
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Reduced Basis Method2

FE Space Vh

Solution T fem(µ)
▶ High fidelity model: Elin : µ 7→ T fem(µ),

2C. Prud’homme et al. “Reliable Real-Time Solution of Parametrized Partial Differential Equations:
Reduced-Basis Output Bound Methods ”. In: Journal of Fluids Engineering 124.1 (Nov. 2001),
pp. 70–80.
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Reduced Basis Method2

FE Space Vh

M = {T fem(µ) |µ ∈ Dµ}

▶ High fidelity model: Elin : µ 7→ T fem(µ),
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Reduced Basis Method2

FE Space Vh

M = {T fem(µ) |µ ∈ Dµ}

Snapshots T fem(µi)

▶ From a set of snapshots
T fem(µ1), · · · ,T fem(µN) computed
only once (offline stage), we define
the reduced functional space:

VN = span(ξ1, · · · , ξN)

where ξi = T fem(µi), is orthonormalized.

▶ Reduced solution (online stage):
T rbm,N(µ) solution of the PDE on
VN .

2C. Prud’homme et al. “Reliable Real-Time Solution of Parametrized Partial Differential Equations:
Reduced-Basis Output Bound Methods ”. In: Journal of Fluids Engineering 124.1 (Nov. 2001),
pp. 70–80.
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Reduced Basis Method
Problem considered
Given µ ∈ Dµ, evaluate the output of inter-
est

sN(µ) = ℓ(T rbm,N(µ);µ)

where T rbm,N(µ) ∈ V is the solution of

a(T rbm,N(µ), v ;µ) = f (v ;µ) ∀v ∈ VN

▶ Snapshots matrix:
ZN = [ξ1, · · · , ξN ] ∈ RN ×N ,

▶ Projection onto VN :
AN(µ) := ZT

N A(µ)ZN ∈ RN×N and
fN(µ) := ZT

N f (µ) ∈ RN ,

Reduced basis resolution
Input: µ ∈ Dµ,
▶ Construct AN(µ), fN(µ) and LN,k(µ),
▶ Solve AN(µ)T rbm,N(µ) = fN(µ),
▶ Compute outputs

sN,k(µ) = LN,k(µ)T T rbm,N(µ).
Output: Numerical solution T rbm,N(µ) and
outputs sN,k(µ).
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Affine decomposition

▶ We want to write A(µ) =
Qa∑

q=1
βq

A(µ)Aq, and F (µ) =
Qf∑

q=1
βq

F (µ)Fq.

▶ Compute and store Aq
N = ZT

N AqZN︸ ︷︷ ︸
independent of µ

and Fq
N = ZT

N Fq.

▶ Hence AN(µ) =
Qa∑

q=1
βq

A(µ)Aq
N and FN(µ) =

Qf∑
q=1

βq
F (µ)Fq

N .
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Affine decomposition

▶ We want to write A(µ) =
Qa∑

q=1
βq

A(µ)Aq, and F (µ) =
Qf∑

q=1
βq

F (µ)Fq.

▶ Compute and store Aq
N = ZT

N AqZN and Fq
N = ZT

N Fq.

▶ a(T , v ;µ) =
4∑

q=1
βq

A(µ)aq(T , v) with

β1
A(µ) = klens a1(T , v) =

∫
Ωlens
∇T · ∇v dx

β2
A(µ) = hamb a2(T , v) =

∫
Γamb

Tv dσ
β3

A(µ) = hbl a3(T , v) =
∫

Γbody
Tv dσ

β4
A(µ) = 1 a4(T , v) =

∫
Γamb

hr Tv dσ +
∑

i ̸=lens ki
∫

Ωi
∇T · ∇v dx
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Affine decomposition

▶ We want to write A(µ) =
Qa∑

q=1
βq

A(µ)Aq, and F (µ) =
Qf∑

q=1
βq

F (µ)Fq.

▶ Compute and store Aq
N = ZT

N AqZN and Fq
N = ZT

N Fq.

▶ f (v ;µ) =
2∑

p=1
βp

F (µ)f p(v)

β1
F (µ) = hambTamb + hr Tamb − E f 1(v) =

∫
Γamb

v dσ

β2
F (µ) = hblTbl f 2(v) =

∫
Γbody

v dσ
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Offline / Online procedure
Offline:
▶ Solve N high-fidelity systems depending on N to form ZN ,
▶ Form and store Fp

N(ξi)
▶ Form and store Aq

N(ξi)

Online: independant of N
Given a new parameter µ ∈ Dµ,
▶ Form AN(µ) : O(QaN2),
▶ Form FN(µ) : O(Qf N),
▶ Solve AN(µ)T rbm,N(µ) = FN(µ) : O(N3),
▶ Compute sN(µ) = LN(µ)T T rbm,N(µ) : O(N).
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Error bound ∆N(µ)

T rbm,N(µ)
T fem(µ)

FE Space Vh

For µ ∈ Dµ, we define the error:

e(µ) = T fem(µ)− T rbm,N(µ)

We require this error bound to be:
▶ rigorous: ∥e(µ)∥X ⩽ ∆N(µ),

▶ sharp: ∆N(µ)
∥e(µ)∥X

⩽ ηmax(µ),

▶ efficient: the computation of
∆N(µ) does not depend on
N .
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Error bound3 ∆N(µ)

Such an error bound can be constructed efficiently from the residual r of the variational
problem:

r(v , µ) := ℓ(v ;µ)− a(T rbm,N(µ), v ;µ) ∀v ∈ V

a lower bound αlb(µ) of the coercivity constant α(µ) of a(·, ·;µ), and the affine
decomposition of a and f :

∆s
N(µ) := ∥r(·, µ)∥2V ′

αlb(µ)

3C. Prud’homme et al. “Reliable Real-Time Solution of Parametrized Partial Differential Equations:
Reduced-Basis Output Bound Methods ”. In: Journal of Fluids Engineering 124.1 (Nov. 2001),
pp. 70–80.
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Non compliant problem

Definition
The problem is said to be compliant if the bilinear form a is symmetric, and ℓ = f .

Error on the output
For µ ∈ Dµ, we have:

s(µ)− sN(µ) = a(T fem − T rbm,N ,T fem − T rbm,N ;µ)

|s(µ)− sN(µ)| ⩽ γ(µ)
∥∥∥T fem − T rbm,N

∥∥∥2

V

The error on the output converges as the square of the error on the field solution T rbm,N

▶ Not our case ! We focus on output like ℓ(µ) = ⟨δO,T (µ)⟩
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Non compliant problem

▶ We introduce the dual problem: Find ψ(µ) ∈ V such that:

a(v , ψ(µ);µ) = −ℓ(v ;µ) ∀v ∈ V

▶ We retrieve a similar property:

|s(µ)− sN(µ)| ⩽ γ(µ)
∥∥∥T fem(µ)− T rbm,N(µ)

∥∥∥
V

∥∥∥ψfem(µ)− ψrbm,N(µ)
∥∥∥

V

▶ The output error bound has the form:

∆s
N(µ) := ∥r

pr(·;µ)∥V ′√
αlb(µ)

∥rdu(·;µ)∥V ′√
αlb(µ)
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Greedy algorithm

Algorithm 1: Greedy algorithm to construct the reduced basis.

Input: µ0 ∈ Dµ, Ξtrain ⊂ Dµ and εtol > 0
S ← [µ0];
while ∆max

N > εtol do
µ⋆ ← arg max

µ∈Ξtrain

∆N(µ) (and ∆max
N ← max

µ∈Ξtrain
∆N(µ));

VN+1 ←
{

ξ = T fem(µ⋆)
}
∪ VN ;

Append µ⋆ to S;
N ← N + 1;

end
Output: Sample S, reduced basis VN
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Laplacian problem with Dirac as a right-hand side

We have a regular-enough domain Ω ⊂ R2. Let X0 = (x0, y0) ∈ Ω.
We consider the following problem:{

−∆u = δX0 in Ω
u = 0 on ∂Ω

(Pδ)

The finite element solution of Eq. (Pδ) uh ∈ V k
h is defined as the solution of the

following problem: ∫
Ω
∇uh · ∇vh = ⟨δX0 , vh⟩ for all vh ∈ V k

h
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Laplacian problem with Dirac as a right-hand side
We can compute the exact solution of Eq. (Pδ).
Definition: Let G : Ω → R be the Green’s function defined by

G(x , y) = − 1
2π log

(√
(x − x0)2 + (y − y0)2

)
.

Proposition: This function satisfies −∆G = δX0 in Ω

Theorem4: Under good conditions, involving subdomains Ω0 ⊂ Ω1 ⊂ Ω, if u denotes
the exact solution and uh the finite element solution of the problem, then

∥u − uh∥1,Ω ⩽ C(Ω0, Ω1, Ω)hk
√
| log(h)|

4Silvia Bertoluzza et al. “Local error estimates of the finite element method for an elliptic problem
with a Dirac source term”. In: Numerical Methods for Partial Differential Equations 34.1 (2018),
pp. 97–120.
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Numerical results
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(a) Numerical solution uh.
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(b) Error on the numerical solution uh com-
pared to the exact solution G .
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Convergence study
We compute the error over a domain Ω0 = Ω \ B(X0, r) where B(X0, r) is a ball
centered in X0 and with radius r .

x
X0

Ω0

Error computed over Ω0:

E := ∥u − uh∥L2(Ω0) or E := ∥u − uh∥H1(Ω0)
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Convergence study: Mesh convergence
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Convergence study: Position of the discontinuity to the border
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Numerical results
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High Fidelity model
µ̄ µmin µmax

302 303 304 305 306 307 308 309 310

Figure 1: Distribution of the temperature [K] in the eyeball from the linear model EL(µ).
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Validation and comparison with previous studies
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Validation: measured values over the GCC
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Time of execution

Finite element resolution Reduced model
T fem(µ) T rbm,N(µ), ∆N(µ)

P1 P2 (np=1) P2 (np=12)

Problem size N = 207 845 N = 1 580 932 N = 10
texec 5.534 s 62.432 s 10.76 s 2.88× 10−4 s

speed-up 11.69 1 5.80 2.17 × 105

Table 2: Times of execution, using mesh M3 for high fidelity simulations.
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Results over a sampling Ξtest ⊂ Dµ of 100 parameters
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Figure 2: Error on RBM for various reduced basis sizes with error bound ∆N(µ).
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Results over a sampling Ξtest ⊂ Dµ of 100 parameters
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Figure 2: Convergence of the errors on the field and the output on point O.
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Results over a sampling Ξtest ⊂ Dµ of 100 parameters
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Figure 2: Stability of the effectivity.
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Sensitivity analysis
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Sobol indices

▶ µ = (µ1, . . . , µn) ∈ Dµ,
▶ µi ∼ Xi where (Xi)i is a family of independent random variables,
▶ Output sN(µ) ∼ Y = f (X1, . . . ,Xn),
▶ Distributions Xi selected from data available in the literature.

Sobol indices

▶ First-order indices: Sj = Var (E [Y |Xj ])
Var(Y )

effect of one parameter on
the output

▶ Total-order indices: Stot
j =

Var
(
E

[
Y |X(−j)

])
Var(Y )

interaction of all parameters
but one on the output

where X(−j) = (X1, . . . ,Xj−1,Xj+1, . . . ,Xn).
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Distributions
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Uncertainty propagation
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Figure 3: Distribution of the output, from the composed input distribution.
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Stochastic sensitivity analysis
Distributions (Xi)n

i=1

Input sample Ξ Output sample
Y = {sN(µ), µ ∈ Ξ}

Reduced model

Openturns Sobol’ indices5

5Michaël Baudin et al. “OpenTURNS: An Industrial Software for Uncertainty Quantification in
Simulation”. In: Handbook of Uncertainty Quantification. Ed. by Roger Ghanem et al. Cham: Springer
International Publishing, 2016, pp. 1–38.
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Stochastic sensitivity analysis
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Figure 4: Sobol indices: temperature at point O.

Temperature at the level of the cornea:
▶ significantly influenced by Tamb,

hamb (external factors) and E , Tbl
(subject specific parameters) −→
need for measurements/better model
for these contributions,

▶ minimally influenced by klens, hbl −→
can be fixed at baseline value,

▶ high order interactions on Tamb,
hamb.

O G
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Stochastic sensitivity analysis
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Figure 4: Mean temperature over the cornea.

Mean temperature over the cornea:
▶ significantly influenced by Tamb,

hamb and E , Tbl,
▶ minimally influenced by klens, hbl,
▶ high order interactions on Tamb,

hamb.

O G
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Stochastic sensitivity analysis
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Figure 4: Sobol indices: temperature at point O.

Temperature at the back of the eye:
▶ only influenced by the blood

temperature.

O G
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Conclusion and outlook
▶ Heat transport model in the human eye: FEM simulations, validation against

experimental data, and model order reduction,
▶ Reduced model with a certified error bound,
▶ Sensitivity analysis: computation of Sobol indices thanks to MOR, highlight of

the impact of some parameters on the output.
Next steps:
▶ Model: couple thermal effect with aqueous humor dynamics in the anterior

chamber,
▶ Non intrusive methods with zoom in zone of interest for non linear of non affine

problems (EIM, NIRB),
▶ Application: robust framework to simulate drug delivery in the eye.

Thank you for your attention!
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